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Abstract. We present a formulation of statistical mechanics models based on conditionai
probability distributions rather than a Hamiltonian. Closely linked with this formulation
is a Monie Carlo algorithm, in which a configuration generated is guaranteed to be
statistically independent of any other configuration for all values of the parameters, in
particular near the critical poinl. The required internal symmetry and the lattice rotational
symmetry are realized in a conventional manner, but the translational symmetry on the
lattice is realized in an unconventional manner. By explicitly constructing a Z;-invariant
mode! in two dimensions, we show that il is possible to realize critical phenomena through
this procedure. We alsa show that the specific heat exponent, a, and the susceplibility
exponent, <y, are consistent with that of the Ising mode! in two dimensions.

Theoretical studies of statistical mechanics models that exhibit critical behaviour play
an important role in understanding various phenomena in physics. These models are
usually defined on a lattice with the relevant degrees of freedom existing on the sites
or links of the lattice. A model is specified by first giving the Hamiltonian, H, which
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between the degrees of freedom. The strengths of the interactions become the
parameters of the model. In the thermodynamic limit, where the number of degrees
of freedom tend to infinity, interesting models exhibit collective phenomena in a
region of the parameter space, or in other words, they behave critically. The central
quantity in statistical mechanics is the Boltzmann distribution

P=ef (1.1)

which gives the probability distribution of the various configurations of the degrees of
freedom. Measurable physical quantities are statistical averages of ocbservables defined
as some function of the degrees of freedom and are calculated with the weight given
by P, An important insight gained from such an analysis of a statistical mechanics
model is that, starting from a Hamiltonian with only Tocal interactions one is able
to observe long-range order, i.e. the statistical averages exhibit collective phenomena,
Studies of various models seem to indicate that many critical properties remain the
same for a wide choice of the interactions as long as the underlying symmetry of the
Hamiltonian is preserved. This goes by the name of ‘universality’ [1].
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Physically relevant statistical mechanics models are usually not exactly solvable and
one has to resort to various approximation techniques to extract the physical proper-
ties. Most difficult to extract are the propertics describing the critical behaviour of the
model. Analytical techniques, based on a high-temperature or a low-temperature ex-
pansion, break down in the vicinity of the critical temperature. Numerical techniques,
referred to as Monte Carlo simulations, performed on a finite lattice are usually
found to be a nice way of studying critical behaviour. Starting from some random
initial configuration of the system, an update is made in a probabilistic manner to
generate a new configuration. A sequence of configurations is generated and if the
transition probability for the update is properly chosen, the sequence has the correct
equilibrium Boltzmann distribution. If the terms in the sequence thus generated are
pairwise-independent, then one gets a good estimate for the statistical average of an
observable by just taking an average over the sequence The longer the sequence, the
betier the estimaié. Bécause the Hamiitonian has only iocal interactions, it 18 possibie
to perform a local update on the system to achieve this. Two such popular algorithms
having a wide range of applicability are ‘Metropolis’ and ‘heat bath’. Since only a
local update is performed, the configuration changes slowly and several updates of the
total Jattice have to be made so that the final configuration obtained is independent
of the starting configuration. As one gets close to the critical point, the number of
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configuration becomes very farge and the numerical study becomes impractical. This
problem is referred to as ‘critical slowing down’. The root of this problem is closely
related to the insight stated in the previous paragraph. Although the Hamiltonian has
only local interactions, there is long-range order present, implying that it is important
to make large changes in the configuration to obtain an independent configuration.
In recent years, using this very point as a basis, there have been various proposals
to overcome this problem. They include multigrid techniques, cluster algorithms and
Fourier acceleration [2]. All these algorithms attempt to perform a global update
of the system rather than a local update, so that large changes are possible and an
independent configuration can be cbtained reasonably fast. Thes¢ approaches have
had successful applications, but they usually seem somewhat model-dependent.

In this paper, we make use of the notion that many different Hamiltonians, or
equivalently many different Boltzmann distributions, could have the same critical
properties and hence we arrive at a choice for the Boltzmann distribution that is eas-
ily accessible to numerical techniques, but one that still has the appropriate physical
properties we require. We present our gencral idea in the next section and discuss
the details of defining a model in section three. We apply this idea to a model in
two dimensions with spin degrees of freedom and having a Z, symmetry. We find
the critical exponents to be in agreement with the 2D Ising model. This forms the
contents of section 4. A summary and some criticisms of the idea constitute the last
section of this paper.

2. The idea

Consider a statistical mechanics model on a finite lattice with n sites. Let the degrees
of freedom be defined on sites and be labelled S, S;,...,5,. For simplicity, let
there be only one parameter called . The Boltzmann distribution, defined in (1.1),
is explicitly P(S,,S;,...,5,:8). What follows can be trivially extended to the
situation where there is more than one coupling and where n — oo,
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We start with the identity

ES:.....S,, P(Sl,SQ,...,Sn;)G) ZSS;---,SH P(SI’SQs"-asn;ﬁ)
231»52-----3-. P(SI’SQs---aSnQ‘G) ZS:....,S., P(5,,5;,...,5,:83)
P(8,,5,,...,5,10)
ZS" P(Sl!SQ!'--,Sn;ﬁ)
— P(S],Sz,...,sn;ﬁ)
ES!.|S2,---,S" P(SI!SQ’---,SH;,B)

x..-

(2.1)

If the Boltzmann distribution is normalized, then the denominator on the right-
hand side of (2.1) is unity. We interpret the left-hand side of (2.1) as follows.
The first term is the probability distribution of S, (p(Sy; 3)); the second term is
the probability distribution of S, conditional on S, (p(S,|S;; 3)). We sequentially
proceed in this manner till we reach the last term, which is the probability distribution
of S, conditional on 5,,85,,...,5,_; (p(5,]51,52,...,5,-1;:8)). The specifics
of the ordering of the degrees of freedom present in the left-hand side of (2.1) will
be addressed in this section.

It is usually very difficult, and in most models impossible, to obtain the condi-
tional probability distribution starting from the Hamiltonian. Since the Boltzmann
distribution, P, is the central quantity in statistical mechanics and not the Hamilto-
nian itself, one can think of defining a model by giving all the conditional probability
distributions. The conditional probability distributions could be local or non-local, in
the sense that it could be conditional on the degrees of freedom on some nearby sites
or it could be conditional on all the degrees of freedom that have already been de-
termined. In this paper, we assume it is local and address the question as to whether
the statistical averages of observables computed using the resulting Boltzmann distri-
bution exhibit critical behaviour at some value of the parameter 3. Further, if some
properties near the critical point of a model defined in this manner are the same as
for another model defined via the Hamiltonian approach, this idea becomes interest-
ing. This approach will then have an added attraction because associated with (2.1)
is a natural procedure for a Monte Carlo simulation that will not suffer from critical
slowing down. A configuration of the n degrees of freedom is formed by first picking
5} according to p(Sy; 3); then picking S, according to p(S,|S; ) and so on, till
we pick S, according to p(S, |5, S,,....5,_;:8). The terms in the sequence of
configurations thus obtained are independent of each other. This is in contrast to
the usual Monte Carlo algorithms, where the new configuration is obtained by a lo-
cal updating of the previous configuration. Therefore by construction, the algorithm
described here is not expected to suffer from critical slowing down.

3. Details of model definition

In order to assign the conditional probability distributions, defined in (2.1), we first de-
fine the sequence of lattice sites necessary for the assignment. We give the specifics for
a two-dimensional infinite square lattice (see figure 1). Each lattice site is labelled [3]
by two indices, [ and . { denotes the level of the lattice site and ranges from 0 to oo,
¢ denotes the specific site on each level and ranges from O to 41— 1. ‘00" is any site on
the infinite lattice. The sites belonging to the level [ are the ones that are remaoved
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by ! steps from ‘00°, i.e. there are ! links connecting ‘00’ with a site on level I. The
degree of freedom on the site ‘42" is S;;. A configuration on the lattice is formed
level by level in the following manner. The conditional probability distributions are
assigned level by level, i.e. first the conditional probability distribution is given for the
degree of freedom on the site at level O, then for all the degrees of freedom on the
sites in level 1 and so on. The algorithm that generates configurations will then be
growing a whole configuration from a single seed and each configuration will be an
independent growth process. The conditional probability distribution of a degree of
freedom at some level is, in general, conditional upon all the degrees of freedom on
the lower levels and all the degrees of freedom on the same level that have already
_been assigned. This statement implies that we should also specify the ordering of the
sites within a level, but if we choose the conditional probability distribution of a site in
one level to be dependent only on sites belonging to lower levels, this is not necessary.

L]

44
5 3 .3
6 g 2 2 .2
7 5 3 11 1 1 .1
¥ 8 g T2 0 7.0 0 0 40
] 7 5 T3 NG I1 415
4,10 ) 6 70 %14
11 K %13
‘12

Figure 1. 20 square lattice showing sites up 1o level 4. Notation is {, s; {: level, s: site.

A typical example of only incorporating short-range interactions, would be to make
the conditional probability distribution dependent on only a few degrees of freedom
on the level that is one step lower. One criterion in choosing the conditional proba-
bility distribution, would be to have it invariant under certain changes of the degrees
of freedom, 50 that the model has an underlying symmetry. An analysis of this model
would then show whether it belongs in the same ‘universality class’ as another model,
defined via the Hamiltonian having the same underlying symmetry. Before we com-
pletely specify a model, we have to make sure that the lattice symmetries are preserved
by the procedure described above. To ensure the lattice symmetries, we can proceed
in two different ways. One way is to choose the seed randomly anywhere on the lattice
and to choose the conditional probability distributions to preserve the discrete rota-
tional symmetry of the lattice. Another way is to fix the seed and choose the condi-
tional probability distribution in such a way that it preserves all the lattice symmetries.

The second path will, in general, be technically diflicult and as such we opt 0
pursue the first path here. We now discuss the symmetry issues pertaining to that
way of defining the model. The conditional probabilities can be chosen to have the



Statistical models based on probability 3353

required internal symmetry without much difficulty. It is the lattice symmetries that
are hard to realize. In particular, translational invariance is difficult to handle. The
reason for this is the presence of a certain specific ordering of the lattice sites in
(2.1). One can choose the order and then suitably assign conditional probabilities so
that the rotational symmetries on the lattice are realized. But due to the fact that
the first site, namely 5, in (2.1) is singled out, there is no transiational invariance.
To restore translational invariance, we do the following, We start with some lattice
site as the seed and define a conditional probability distribution, associated with that
site, that has the required internal symmetry and the discrete rotational symmetry.
Picking two different sites on the lattice as the seed, we can associate conditional
probability distributions with each of them that are simply related by a lattice trans-
lation connecting the two sites. This procedure can be repeated for every site on
the lattice so that there is a conditional probability distribution associated with each
site and they are all related to each other by lattice translations. If we now define
the Boltzmann distribution for the model to be the average of all these conditional
probability distributions, then it is evident that the resulting model has translational
invariance. Since the resulting distribution is positive, an associated Hamiltonian can
be obtained by formally taking the logarithm of the Boltzmann distribution. The
Hamiltonian associated with the resulting Boltzmann distribution is expected to have
complicated interactions because there is a sum over infinitely many conditional prob-
ability distributions. In fact, the Hamiltonian could cven have non-local interactions
and it is not a priori clear that one can invoke the concepis of universality in critical
phenomena. But the Hamiltonian will have the required internal symmetry and the
lattice symmetries. In the Janguage of renormalization group [4], the resulting Hamil-
tonian will have many irrelevant terms. This situation is not much different from the
one that arises out of Kadanoft’s blocking scheme [1]. There again each blocking step
adds extra interactions that are irrelevant. Of course, in Kadanoff’s blocking scheme,
the sequence of Hamiltonians obtained as a result of blocking, all lie in one basin of
attraction and are therefore guaranteed to have the same critical behaviour. In our
way of defining the model, we end up with a Hamiltonian with many irrelevant terms
but we have no a priori notion of where it lies in the parameter space. In particular,
we do not know if it lies in the same basin of attraction as another model defined
via the standard Hamiltonian procedure and having the same internal symmetry. But
this question can be answered by an explicit numerical study of a mode! defined by
the procedure described here.

4. Application to 2D Z, modei

The ideas discussed in the previous sections are applied to the case of a Z,-symmetric
model on a two-dimensional infinite square lattice. The aim is to see if there is a
phase transition and to compare the bchaviour ncar the critical point with the nearest-
neighbour Ising model [5].

The degrees of freedom on each site are the usual Ising spins, 5;; = £1. The spin,
Sy 15 assigned 1 with equal probability. The conditional probability distribution
of spins on level { will be chosen to depend on the state of spins on the level just
below 1. To this end, we classily the sites on the infinite square lattice into two
categories:

(i) Includes all the sites that have one nearest neighbour in the previous level.
There are exactly four such sites in each level (sce figure 1).
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(ii) Includes all the sites that have two nearest neighbouts in the previous level.
There are exactly 4(I — 1) such sites in level { (see figure 1).

Consider a spin, S);, belonging to category (i). Let the nearest neighbour in the
level (1 —1) be S;_,,;. The conditional probability distribution of 5, is given by

1 + bS“S(J—IJJ'
2

P (SylSu_ny;i0) = (4.1)

where b is a parameter such that 0 £ b < 1. Now consider a spin, 5;, belonging to
category (ii). Let the two nearest neighbours in the level { —1be S, ), and 5; .
For example, in figure 1, S,, is a spin belonging to category (ii) in level 4, and Sy,

and S,, are its two nearest neighbours in level 3. The conditional probability of S,
is given by

(14 055;502,); (1 + 65,55 1y%)

PSS i S ) = .
PRTHIT- 1 T =1k L5, =1+ 08,5 5);)(1 4+ 05,5 13.)

(4.2)

This assignment is a simple one, where the choice of the state of the spin to be
added is only influenced by nearest-neighbour sites. Choosing the above conditional
probability distribution and summing over all sitcs on the lattice for the seed, ensures
the lattice symmetries. From (4.1) and (4.2), it is clear that the model thus defined
has an underlying Z, symmetry.

We study this model by the numerical algorithm described at the end of section 2.
For this purpose, we will work on a finite lattice with periodic boundary conditions
and then we will have some sites on the lattice that do not fit into category (i) or (ii),
described above, because they will have three or four nearest-neighbour spins in the
previous level. For those spins, we extend (4.2) to include all the nearest neighbours.
The only control parameter in this model is b and we let

b=tanh 3. (4.3)

Since 1/3 is expected to be proportional to the physical temperature near the critical
point of the model, this redefinition of the control parameter is useful.

We proceed to analyse the model defined above. Consider the two basic statistical
observables,

M=) 8, (4.4)
i

E - Z Shl‘[ Slgiz (4'5)

[11f:,1240)

where the sum in (4.4) runs over all lattice sites, and the sum in (4.5) runs over
all nearest neighbouring pairs in the lattice. Since we will be working with periodic
boundary conditions and because the quantities M and £ are summed over all sites
on the lattice, it is sufficient in our Monte Carlo simulation 1o start from one fixed
site on the lattice. M measures the total magnetization and E measures the nearest-
neighbour correlations. Due to the Z, symmetry present in the model, (M) will be
zero in any finite lattice. We study the histogram of M to show qualitatively the
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critical behaviour present in the model. A study of the scaling behaviour will be done
through the two averages

C= f,Lg((F’!) (E)?) (4.6)
x = = (IMP) = (IMD?) 7

where L is the length of the square lattice. The definition of x chosen here uses
|M| instead of M since it is more suitable for finite-size scaling analysis [5]. By
studying the data for € on a 32 x 32 lattice, we will show that all the measurements
are independent, indicating that there is no critical slowing down in our simulation.
We now present the results of our simulation. Figure 2 shows the distribution of
magnetization per site, m = J'foLZ on a 32 x 32 lattice for 8 = 0,1.4,3. A total of
5000 configurations were generated. 3 = 0 corresponds to infinite temperaturc and
total disorder. This is evident from the sharp peak in the distribution at mn = 0. On
the other hand, the distribution at 3 = 3 shows two sharp peaks at m = +1. This
shows that a strong ferromagnetic ordering has set in at 3 = 3. One therefore expects
a phase transition somewhere between 4 = 0 and 3 = 3, where the distribution of

m i§ exnected to be flat indicating that gnin clusters of varvine sizeg are Pmmllv
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preferred. In figure 2, we see this happening at 3 =1.4.

5000 [T T 1 I T 7T ‘ T T | 11 | T TT | T T7 | T 1771 T T T 17T i
4000 - Z -
2 - i
g - -
® 3000 - ) =0 —
i ? |
sk % ]
[ § ]
'S 2000 & 8=3 i
s \
\ \
1000 § / §
) / \

N B=1.4 7 =

I e
0 i T*‘—I_//%m\

!

i

-5 -4 -2 ] 2 4 B 8
Magnetization per site {m)

=

Figure 2. Distribution of magnetizalion per sile.

Before we analysed C and x for their critical behaviour, we verified that the
configurations generated by this algorithm are independent by analysing the data for
C on a 32 x 32 lattice at 8 = 1.6. We generated a total of 5000 configurations.
These were then put into bins of sizes varying from 1 to 20. An average value was
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computed for each bin. The bin averages were then assumed to be independent and
an overall average and standard deviation were computed. We found the standard
deviation to be 0.08, independent of the bin size, confirming that the original set of
5000 measurements are truly independent.

In order to perform a quantitative analysis in the scaling region, we perform a
finite-size scaling analysis of C' and x. We study periodic lattices of several lengths
ranging from L = 4 to L = 32 in steps of 4. By varying 3 on all these lattices, we
obtain the maximum values of C' and x, namely, C, . (L) and x,,,(L). Finite-size
scaling {6, 7] means that

Coax (L)Y~ LY < (4.8)
Xmax(L) ~ L.”’V (49)

where o is the exponent characterizing the divergence of C, ~ is the exponent
characterizing the divergence of x and v is the exponent characterizing the divergence
of the correlation length in the infinite lattice. If either « or + is zero, as is the case
in the 2D Ising model (e = 0), then the corresponding quantity on the finite lattice is
expected to scale as In L. Our finite-size analysis for C and x are shown in figures 3
and 4 respectively. In figure 3, we plot C,, (L) versus In L. A straight line fits the
data quite well asymptotically indicating that o = 0. In figure 4, we plot In % .. (L)
versus In L, A simple-minded least-square fit of the data to a straight line gives a
slope of 1.88 + 0.28, giving an estimate for v/v. This estimate is consistent with
the exact result of v /v = 7/4 for the Ising model [5). This shows that the analysis
performed here is consistent with the statement that the model investigated is in the
same universality class as the 2D Ising model.

5 | L l T T 1771 ‘ LI L | i 1 T 1T 11T LI L [ LI I_a
45 |- —
L ] i
B i ]
4 |- A
C i ]
= N
5 35 I ]
[$) L -
3 ¥ ]
25 —
B i ]
2 —l L1 ‘ 11 1 1 | | | | P | I LA 11 i | I | | | I l_l L1 ] J;
0 5 1 15 2 25 3 3.5 4
In{L}

Figure 3. Finite-size scaling of specific heat.
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Figure 4. Finite-size scaling of susceptibility.
5. Summary and criticisms

In this paper, we investigated, from a slightly different viewpaint, the possibility of
realizing long-range order in a statistical model starting from short-range interactions.
Whereas in conventional methods one starts from a Hamiltonian with short-range in-
teractions, here we started with short-range interactions in the conditional probability
distributions of the degrees of freedom. This is based on an intuitive picture, where a
configuration of the statistical mechanical system is formed by a growth process using
a single degree of freedom as the seced. The growth is similar to the growth of a
crystal. The state of the new degree of freedom that is added, should be dependent
on the collective state of the degrees of freedom alrcady present. Modelling this sta-
tistically, is achieved by specifying the conditional probability distribution. By locality
or short-range interactions, in this context, it is meant that the probability distribution
is conditional on only a few nearby degrees of freedom. This way of formulating a
statistical mechanics model leads to a different Monte Carlo algorithm, where each
configuration generated is guarantced to be statistically independent. This statement
is true for all values of the parameters and further, the effort put into generating a
configuration is the same for all values of the parameters. Therefore the simulation
does not suffer from critical slowing down.

In sections 2 and 3, we developed the details of the construction of a model,
through the aforementioned procedure. That such an approach could lead to physi-
cally interesting models is demonstrated by constructing a Z,-symmetric model in two
dimensions with spin degrees of freedom and showing that the model exhibits a fer-
romagnetic order at low temperature. Analysis of the critical exponents of this model
via finite-size scaling shows that they are the same as those for the two-dimensional
Ising model. This analysis of the model is, of coursc, far from complete. It is impor-
tant to study the two-point spin correlation function. A careful analysis will enable us
to study the correlation length near the critical point and also enable the extraction



3558 R § Narayanan

of the correlation length exponent, v. A study of the two-point function will also
help us understand the low-lying spectrum. Also, we nced to verify whether scaling
laws are obeyed in this model near the critical point. Since translational invariance is
realized in an unconventional manner, it is important to study the clustering property
of four-point functions. Some of these issues are currently under study.

If we take the viewpoint that the agreement of the critical exponents for stan-
dard thermodynamic quantities between two different models puts them in the same
‘universality class’, then we could conclude that it is possible to construct models via
the procedure developed here and be in the same universality class as the standard
models constructed via the Hamiltonian approach. But there could be a criticism to
this statement, particularly if one is interested in defining a quantum field theory at
the critical point of the statistical mechanics model. In this paper, we have not dealt
with the existence of a Hamiltonian operator. Therefore, questions such as unitarity
and locality of the model are not discussed here. In the context of quantum field
theory, one also has to answer such qucstions as to whether the particle spectrum and
strength of interactions are consistent with a physically relevant model. Although it is
hard to extract the exact Hamiltonian associated with this procedure, it is reasonably
ciear that the interactions are rather complicated. As a consequence it is not certain
that this approach will succeed in constructing physically usefu!l quantum field theo-
ries. On the other hand, it could be useful in analysing statistical mechanics models
that exhibit critical behaviour. In particular, since the Monte Carlo algorithm does
not suffer from critical slowing down, the procedure described here could be of use
in extracting critical exponents of interesting models to a good accuracy.
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