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AbslracL W e  presenl a lormulation o i  statisiieal mechanics models based on conditional 
probabilily distributions rather than  a Hamiltonian. Closely linked with this formulation 
is  a Monte Carlo algorithm, in which a configuration generated is guaranleed lo  be 
statistically independent of any other configuration for all va lua  of the paramelen, in 
parlicular near the crilicsl point. The required internal symmetry and the lattice rotational 
symmetry are realized in  a conventional manner. but lhe translational symmelry on lhe 
lattice is realized in an unconventional manner. By explicitly conslructing a Zz-invananl 
model in two dimensions, we show l l ia l  il is possible lo realize cri l iml phenomena lhmugh 
this procedure. We also show that lhe spccific heat exponent. (I, and the suseeplibilily 
mponenl, y. are consistent wilh that o f  the Iring model in two dimensions. 
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Theoretical studies of statistical mechanics models that exhibit critical behaviour play 
a n  important role in understanding various phenomena in physics. These models are 
usually defined on a lattice with the relcvant degrees of freedom existing on the sites 
or links of the lattice. A model is specified by lirst giving the Hamiltonian, H ,  which 

between the degrees of freedom. The strengths of the interactions become the 
parameters of the model. In the thermodynamic limit, where the number of degrees 
of freedom tend to infinity, interesting models exhibit collective phenomena in a 
region of the parameter space, or in other words, they behave critically. The central 
quantity in statistical mechanics is the Boltzmann distribution 

dcfizes. !he tact?! ezergy of the system 2nd is made "p af same ! o s !  iflte:t?aiaxs 

I' = eH (1.1) 

which gives the probability distribution of the various configurations of the degrees of 
freedom. Measurable physical quantities are statistical averages of observables defined 
as some function of the degrecs of freedom and are calculated with the weight given 
by P .  & important insight gained from such an analysis of a statistical mechanics 
model is that, starting from a Hamiltonian with only local interactions one is able 
to observe long-range order, i.e. the statistical averages exhibit collective phenomena. 
Studies of various models seem to indicate that many critical properties remain the 
same for a wide choice of the interactions as long as the underlying symmetry of the 
Hamiltonian is preserved. This goes by the name of 'universality' [l]. 
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Physically relevant statistical mechanics models are usually not exactly solvable and 
one has to resort to various approximation techniques to extract the physical proper- 
ties. Most difficult to extract are the properties describing the critical behaviour of the 
model. Analytical techniques, based on a high-temperature or a low-temperature ex- 
pansion, break down in the vicinity of the critical temperature. Numerical techniques, 
referred to as Monte Carlo simulations, performed on a finite lattice are usually 
found to be a nice way of studying critical behaviour. Starting from some random 
initiai configuration of the system, an update is made in a probabilistic manner to 
generate a new configuration. A sequence of configurations is generated and if the 
transition probability for the update is properly chosen, the sequence has the correct 
equilibrium Boltzmann distribution. If the terms in the sequence thus generated are 
painvise-independent, then one gets a good estimate for the statistical average of an 
observable by just taking an average over the sequence. The longer the sequence, the 
oerrer me esrimarr. Because rne mamiironian has oniy iocai interactions, it is possibie 
to perform a local update on the system to achieve this. XVO such popular algorithms 
having a wide range of applicability are ‘Metropolis’ and ‘heat bath’. Since only a 
local update is performed, the configuration changes slowly and several updates of the 
total lattice have to be made so that the final configuration obtained is independent 
of the starting configuration. As one gets close to the critical point, the number of 

configuration becomes very large and the numerical study becomes impractical. This 
problem is referred to as ‘critical slowing down’. The root of this problem is closely 
related to the insight stated in the previous paragraph. Although the Hamiltonian has 
only local interactions, there is long-range order present, implying that it is important 
to make large changes in the configuration to obtain an independent configuration. 
In recent years, using this very point as a basis, there have been various proposals 
to overcome this problem. They include multigrid techniques, cluster algorithms and 
Fourier acceleration [2]. All these algorithms attempt to perform a global update 
of the system rather than a local update, so that large changes are possible and an 
independent configuration can be obtained reasonably fast. These approaches have 
had successful applications, but they usually seem somewhat model-dependent. 

In this paper, we make use of the notion that many different Hamiltonians, or 
equivalentl; many different Boltzmann distributions, could have the same critical 
properties and hence we arrive at a choice for the Boltzmann distribution that is eas- 
ily accessible to numerical techniques, but one that still has the appropriate physical 
properties we require. We present our general idea in the next section and discuss 
the details of defining a model in section three. We apply this idea to a model in 
two dimensions with spin degrees of freedom and having a Z, symmetry. We find 
the critical exponents to be in agreement with the 2D king model. This forms the 
contents of section 4. A summary and some criticisms of the idea constitute the last 
section of this paper. 

e 
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2. The idea 

Consider a statistical mechanics model on a finitc lattice with 71 sites. Let the degrees 
of freedom be defined on sites and be Iabellcd SI, S,, . . . , S,. For simplicity, let 
there be only one parameter called @. The Boltzmann distribution, defined in (Ll), 
is explicitly P( S,, S,, . , , , S, ; p). What follows can be trivially extended to the 
situation where there is more than  one coupling and where 71 - ca. 
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We start with the identity 

If the Boltzmann distribution is normalized, then the denominator on the right- 
hand side of (2.1) is unity. We interpret the left-hand side of (2.1) as follows. 
The first term is the probability distribution of SI ( p (  SI; p)); the second term is 
the probability distribution of S, conditional on SI (p(S,IS,; P)). We sequentially 
proceed in this manner till we reach the last term, which is the probability distribution 
of S, canditional on S,, S2, .  . . , Sn-I ( p (  S,IS,, S,, . . . , Snw1; p)). The specifics 
of the ordering of the degrees of frccdom present in the left-hand side of (2.1) will 
be addressed in this section. 

It is usually very dilficult, and in most models impossible, to obtain the condi- 
tional probability distribution starting from the Hamiltonian. Since the Boltzmann 
distribution, P, is the central quantity in statistical mechanics and not the Hamilto- 
nian itself, one can think of defining a model by giving all the conditional probability 
distributions. The conditional probability distributions could be local or non-local, in 
the sense that it could be conditional on the degrees of freedom on some nearby sites 
or it could be conditional on all the degrees of freedom that have already been de- 
termined. In this paper, we assume it is local and address the question as to whether 
the statistical averages of observablcs computed using the resulting Boltzmann distri- 
bution exhibit critical behaviour at some value of the parameter 0. Further, if some 
properties near the critical point of a model defined in this manner are the same as 
for another model defined via the Hamiltonian approach, this idea becomes interest- 
ing. This approach will then have an added attraction because associated with (2.1) 
is a natural procedure for a Monte Carlo simulation that will not suffer from critical 
slowing down. A configuration of the n degrees of freedom is formed by first picking 
S, according to p(S,;  p) ;  then picking S, according to p ( S , l S I ; P )  and so on, till 
we pick S,  according to p(S,IS,, S,, . . . , Sn-,;p). The terms in the  sequence of 
configurations thus obtained are independent of each other. This is in contrast to 
the usual Monte Carlo algorithms, where the new configuration is obtained by a lo- 
cal updating of the previous configuration. Therefore by construction, the algorithm 
described here is not expected to suffer from critical slowing down. 

3. Details of model defirition 

In order to assign the  conditional probability distributions, defined in (Z.l), we first de- 
fine the sequence of lattice sites necessary for the assignment. We give the specifics for 
a two-dimensional infinite square lattice (see figure 1). Each lattice site is labelled [3] 
by two indices, 1 and i. 1 denotes the level of  the lattice site and ranges from 0 to 00. 

i denotes the  specific site on each level and ranges from 0 to 41 - 1. '00' is any site on 
the infinite lattice. The sites belonging to the level 1 are the ones that are removed 
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by 1 steps from ‘OW, i.e. there are I links connecting ‘00’ with a site on level 1. The 
degree of freedom on the site ‘li’ is Sl i .  A configuration on the lattice is formed 
level by level in the following manner. The conditional probability distributions are 
assigned level by level, i.e. first the conditional probability distribution is given for the 
degree of freedom on the site a t  level 0, then for all the degrees of freedom on the 
sites in level 1 and so on. The algorithm that generates configurations will then be 
growing a whole configuration from a single seed and each configuration will be an 
independent growth process. The conditional probability distribution of a degree of 
freedom at Some level is, in general, conditional upon all the degrees of freedom on 
the lower levels and all the degrees of freedom on the same level that have already 
been assigned. This Statement implies that we should also specify the ordering of the 
sites within a level, but if we choose the conditional probability distribution of a site in 
one level to be dependent only on sites belonging to lower levels, this is not necessary. 

.O 

Figure 1. ZD square lattice showing silcs up lo level 4. Notation is I ,  8 ;  1: level, 8:  site. 

A typical example of only incorporating short-range interactions, would be to make 
the conditional probability distribution dependent on only a few degrees of freedom 
on the level that is one step lower. One criterion in choosing the  conditional proba- 
bility distribution, would be to have it  invariant under certain changes of the degrees 
of freedom, so that the model has an underlying symmetry. An analysis of this model 
would then show whether it belongs in the same ‘universality class’ as another model, 
defined via the Hamiltonian having the same undcrlying symmetry. Before we com- 
pletely specify a model, we have to make sure that the lattice symmetries are preserved 
by the procedure described above. ?b ensure the lattice symmetries, we can proceed 
in two different ways. One way is to choose the seed randomly anywhere on the lattice 
and to choose the conditional probability distributions to preserve the discrete rota- 
tional symmetry of the lattice. Another way is to Ti the seed and choose the condi- 
tional probability distribution in such a way that it preserves all the lattice symmetries. 

The second path will, in general, be technically dilficult and as such we Opt  tO 
pursue the first path here. We now discuss the symmetry issucs pertaining to that 
way of defining the model. The conditional probabilities can be chosen to have the 
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required internal symmetry without much difficulty. It is the lattice symmetries that 
are hard to realize. In particular, translational invariance is dilficult to handle. The 
reason for this is the presence of a certain specific ordering of the lattice sites in 
(2.1). One can choose the order and then suitably assign conditional probabilities so 
that the rotational symmetries on the lattice are realized. But due to the fact that 
the first site, namely S,, in (2.1) is singled out, there is no translational invariance. 
lb restore translational invariance, we do the following. We start with some lattice 
site as the seed and define a conditional probability distribution, associated with that 
site, that has the required internal symmetry and the discrete rotational symmetry. 
Picking two different sites on the lattice as the seed, we can associate conditional 
probability distributions with each of them that are simply related by a lattice trans- 
lation connecting the two sites. This procedure can be repeated for every site on 
the lattice so that there is a conditional probability distribution associated with each 
site and they are all related to each other by lattice translations. If we now define 
the Boltzmann distribution for the model to be the average of all these conditional 
probability distributions, then it is evident that  the resulting model has translational 
invariance. Since the resulting distribution is positive, an associated Hamiltonian can 
be obtained by formally taking the logarithm of the Boltzmann distribution. The 
Hamiltonian associated with the rcsulting Boltzmann distribution is expected to have 
complicated interactions because there is a sum over infinitely many conditional prob- 
ability distributions. In fact, the Hamiltonian could even have non-local interactions 
and it is not a priori clear that one can invoke the concepts of universality in critical 
phenomena. But the Hamiltonian will have the required internal symmetry and the 
lattice symmetries. In the language of renormalization group [4], the resulting Hamil- 
tonian will have many irrelevant terms. This situation is not much different from the 
one that arises out of Kadanoffs blocking scheme [l]. There again each blocking step 
adds extra interactions that are irrelevant. Of course, in Kadanoff's blocking scheme, 
the sequence of Hamiltonians obtained as a result of blocking, all lie in one basin of 
attraction and are therefore guaranteed to have the same critical behaviour. In our 
way of defining the model, we end u p  with a Hamiltonian with many irrelevant terms 
but we have no a priori notion of where it lies in the parameter space. In particular, 
we do not know if it lies in the same basin of attraction as another model defined 
via the standard Hamiltonian procedure and having the same internal symmetry. But 
this question can be answered by an explicit numerical study of a model defined by 
the procedure described here. 

4. Application to 2D Z, model 

The ideas discussed in the previous sections are applied to the case of a 2,-symmetric 
model on a two-dimensional infinite square lattice. The aim is to see if there is a 
phase transition and to compare the behaviour near the critical point with the nearest- 
neighbour king model [5 ] .  

The degrees of freedom on each site are the usual k ing  spins, Sli = f l .  The spin, 
S,,,, is assigned f l  with equal probability. The conditional probability distribution 
of spins on level 1 will be chosen to depend on the state of spins on the level just 
below 1. To this end, we classify the sitcs on the infinite square lattice into two 
categories: 

(i) Includes all the sites that have one nearest neighbour in the previous level. 
There are exactly four such sites in each level (see figure 1). 
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(ii) Includes all the sites that have two nearest neighbours in the previous level. 

Consider a spin, Sti ,  belonging to categoly (i). Let the nearest neighbour in the 
There are exactly 4(1- 1) such sites in level 1 (see figure 1). 

level ( 1  - 1) be S ( t - l ) j .  The conditional probability distribution of Sti is given by 

where b is a parameter such that 0 6 b 6 1. Now consider a spin, Sti, belonging to 
category (ii). Let the two nearest neighbours in the level 1 - 1 be S(,-l)j and S(l-l k. 
For example, in figure 1, S4, is a spin belonging to category (ii) in level 4, and &l 

and S,, are its two nearest neighbours in level 3. The cnnditional probability of Sti  
is given by 

This assignment is a simple one, where the choice of the state of the spin to be 
added is only influenced by nearest-neighbour sites. Choosing the above conditional 
probability distribution and summing over all sites on the lattice for the seed, ensures 
the lattice symmetries. From (4.1) and (4.2), it is clear that the model thus defined 
has an underlying Z, symmetly. 

We study this model by the numerical algorithm described at the end of section 2. 
For this purpose, we will work on a finite lattice with periodic boundaly conditions 
and then we will have some sites on the lattice that do not fit into category (i) or  (ii), 
described above, because they will have three or four nearest-neighbour spins in the 
previous level. For those spins, we extend (4.2) to include all the nearest neighbours. 
The only control parameter in this model is b and we let 

b = t a n h  /3. (4.3) 

Since 1/p is expected to be proportional to the physical temperature near the critical 
point of the model, this redefinition of the control parameter is useful. 

We proceed to analyse the model defined above. Consider the two basic statistical 
ohservahles, 

M = Sli  
l i  

(4.4) 

(4.5) 

where the sum in (4.4) runs over all lattice sites, and the sum in (4.5) runs over 
all nearest neighbouring pairs in the lattice. Since we will be working with periodic 
boundary conditions and because the quantities M and E are summed over all sites 
on the lattice, it is suthcient in our Monte Carlo simulation to start from one futed 
site on the lattice. M measures the total magnetization and E measures the nearest- 
neighbour correlations. Due to the Z, symmetly present in the model, (M)  will be 
zero in any finite lattice. We study the histogram of M to show qualitatively the 
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critical behaviour present in the model. A study of the scaling behaviour will he done 
through the two averages 

1 c = = ( ( E 2 )  - ( E ) ? )  

x = #w) - (IMI)') 
1 

where L is the length of the square lattice. The definition of x ch 

(4.6) 

(4.7) 

ere uses 
IMI instead of Ms ince  it is more suitable for finite-size scaling analysis [5 ] .  By 
studying the data for C on a 32 x 32 lattice, we will show that all the measurements 
are independent, indicating that there is no critical slowing down in our simulation. 

We now present the results of our simulation. Figure 2 shows the distribution of 

5000 configurations were generated. p = 0 corresponds to infinite temperature and 
total disorder. This is evident from the sharp peak in the distribution at m = 0. On 
the other hand, the distribution at p = 3 shows two sharp peaks a t  m = *l. This 
shows that a strong ferromagnetic ordering has set in at p = 3. One therefore expects 
a phase transition somewhere between p = 0 and p = 3, where the distribution of 

pnlllll" 

preferred. In figure 2, we see this happening at p = 1.4. 

magne~&oii nt = 1"fi L', on a 32 32 laiiice fOi p = 0, ;,4,3, A iota; of 

1T. 5 P Y n P r t P n  to be fie:, i..?i..ting spi; c!.ster. of v.ryifig sizes -my--.-" -1"-"J 

-1 -.8 -.6 - .4  -.2 0 .2 .4 .6 .a 1 
Magnetization per s i t e  (m) 

Figure 2, Dislribulion of magneliralion pcr sile. 

Before we analysed C and s for their critical behaviour, we verified that the 
configurations generated by this algorithm are independent by analysing the data for 
C on a 32 x 32 lattice at /3 = 1.6. We generated a total of 5000 configurations. 
These were then put  into bins of sizes varying from 1 to 20. An average value was 
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computed for each bin. The bin averages were then assumed to be independent and 
an overall average and standard deviation were computed. We found the standard 
deviation to be 0.08, independent of the bin size, confirming that the original set of 
So00 measuremenn are truly independent. 

In order to perform a quantitative analysis in the scaling region, we perform a 
finite-size scaling analysis of C and x. We study periodic lattices of several lengths 
ranging from L = 4 to L = 32 in steps of 4. By varying p on all these lattices, we 
obtain the maximum values of C and x, namely, C,nax(L) and xmaL( L ) .  Finite-size 
scaling [6,7] means that 

C m a x ( L )  - La/"  

xmax(L) - L"" 

where a is the exponent charac rizing the divergence of C, y is the exponent 
characterizing the divergence of x and U is thc exponcnt characterizing the divergence 
of the correlation length in the infinite lattice. If either a or y is zero, as is the case 
in the 2D Ising model (a = 0), then the corresponding quantity on the finite lattice is 
expected to scale as ln  L. Our finite-size analysis for C and s are shown in figures 3 
and 4 respectively. In figure 3, we plot C,,,( L)  versus In  L. A straight line fits the 
data quite well asymptotically indicating that a = 0. In figure 4, wc plot In xmaX(L) 
versus In L. A simple-minded least-square fit of the data to a straight line gives a 
slope of 1.88 0.28, giving an estimate for ?/U. This estimate is consistent with 
the exact result of y / u  = 7/4  for the king model 151. This shows that the analysis 
performed here is consistent with the statement that the model investigated is in the 
same universality class as the 2D king modcl. 

-1 
9 35 
" 

c 
I 

Figure 3. Finiwsize scaling of specific heal 
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Figure 4. Finite-size scaling at susceplibilily. 

5. Summary and  criticisms 

In this paper, we investigated, from a slightly different viewpoint, the possibility of 
realizing long-range order in a statistical model starting from short-range interactions. 
Whereas in conventional methods one  starts from a Hamiltonian with short-range in- 
teractions, here we started with short-range interactions in the conditional probability 
distributions of the degrees of freedom. This is based on an  intuitive picture, where a 
configuration of the statistical mechanical system is formed by a growth process using 
a single degree of freedom as the seed. The  growth is similar to the growth of a 
crystal. The  state of the new degree of freedom that is added, should be dependent 
on the  collective state of the degrees of freedom already present. Modelling this sta- 
tistically, is achieved by specifying the conditional probability distribution. By locality 
or short-range interactions, in this context, it is meant that the probability distribution 
is conditional on only a few nearby degrecs of frecdom. This way of formulating a 
statistical mechanics model leads to a different Monte Carlo algorithm, where each 
configuration generated is guaranteed to be statistically independent. This statement 
is true for all values of the parameters and further, the effort put into generating a 
configuration is the same for all vdlucs of the parameters, Therefore the simulation 
does not suffer from critical slowing down. 

In sections 2 and 3, we deve lop4  the  dctails of thc construction of a model, 
through the aforementioned procedure. That such an approach could lead to physi- 
cally interesting models is demonstrated by constructing a Z,-symmctric model in W O  
dimensions with spin degrees of freedom and showing that the model exhibits a fer- 
romagnetic order at low temperature. Analysis of the critical exponents of this model 
via finite-size scaling shows that thcy are thc samc as those for the two-dimensional 
k ing  model. This analysis of the model is, of coursc, far from complete. It is impor- 
tant to study the  two-point spin correlation function. A careful analysis will enable us 
t o  study the correlation length near the critical point and also enable the extraction 
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of the correlation length exponent, U. A study of the two-point function will also 
help us understand the low-lying spectrum. Also, we need to verify whether scaling 
laws are obeyed in this model near the critical point. Since translational invariance is 
realized in an unconventional manner, it is important to study the clustering property 
of four-point functions. Some of these issues are currently under study. 

If we take the viewpoint that the agreement of the critical exponents for stan- 
dard thermodynamic quantities between two different models puts them in the same 
‘universality class’, then we could conclude that it is possible to construct models via 
the procedure developed here and be in the Same universality class as the standard 
models constructed via the Hamiltonian approach. But there could be a criticism to 
this statement, particularly if one is interested in defining a quantum field theory at 
the critical point of the statistical mechanics model. In this paper, we have not dealt 
with the existence of a Hamiltonian operator. Therefore: questions such as unitarity 
and locality of the model are not discussed here. I n  the context of quantum field 
theory, one also has to answer such questions as to whether the particle spectrum and 
strength of interactions are consistent with a physically relevant model. Although it is 
hard to extract the exact Hamiltonian associated with this procedure, it is reasonably 
clear that the interactions are rather complicated. As a consequence it is not certain 
that this approach will succeed in constructing physically useful quantum field theo- 
ries. On the other hand, it could be useful in analysing statistical mechanics models 
that exhibit critical behaviour. In particular, since the Monte Carlo algorithm does 
not suffer from critical slowing down, the procedure described here could be of use 
in extracting critical exponents of interesting models to a good accuracy. 
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